Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadg9278, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478616

RESUMO

Canonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/ß-catenin-S1P cross-talk. In the vascular system, both Wnt/ß-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of ß-catenin. By studying vascular smooth muscle cells and arterial injury response, we find a specific requirement for the ß-catenin carboxyl terminus, which acts to induce S1PR1, and show that this interaction is essential for vascular remodeling. We also report that pharmacological inhibition of the ß-catenin carboxyl terminus reduces S1PR1 expression, neointima formation, and atherosclerosis. These findings provide mechanistic understanding of how Wnt/ß-catenin and S1P systems collaborate during vascular remodeling and inform strategies for therapeutic manipulation.


Assuntos
Aterosclerose , Cateninas , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Cateninas/metabolismo , beta Catenina/metabolismo , Remodelação Vascular , Transdução de Sinais
2.
iScience ; 25(10): 105058, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36134334

RESUMO

Mouse models enable the study of genetic factors affecting the complex pathophysiology of metabolic disorders. Here, we identify reductions in leptin levels, food intake, and obesity due to high-fat diet, accompanied by increased leptin sensitivity, in mice that harbor the E2a-Cre transgene within Obrq2, an obesity quantitative trait locus (QTL) that includes the leptin gene. Interestingly, loss of allograft inflammatory factor-1-like (AIF1L) protein in these transgenic mice leads to similar leptin sensitivity, yet marked reversal of the obesity phenotype, with accelerated weight gain and increased food intake. Transgenic mice lacking AIF1L also have low circulating leptin, which suggests that benefits of enhanced leptin sensitivity are lost with further impairment of leptin expression due to loss of AIF1L. Together, our results identify AIF1L as a genetic modifier of Obrq2 and leptin that affects leptin levels, food intake, and obesity during the metabolic stress imposed by HFD.

3.
Cardiovasc Res ; 118(12): 2718-2731, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34478521

RESUMO

AIMS: Graft vascular disease (GVD), a clinically important and highly complex vascular occlusive disease, arises from the interplay of multiple cellular and molecular pathways. While occlusive intimal lesions are composed predominantly of smooth-muscle-like cells (SMLCs), the origin of these cells and the stimuli leading to their accumulation in GVD are uncertain. Macrophages have recently been identified as both potential drivers of intimal hyperplasia and precursors that undergo transdifferentiation to become SMLCs in non-transplant settings. Colony-stimulating factor-1 (CSF1) is a well-known regulator of macrophage development and differentiation, and prior preclinical studies have shown that lack of CSF1 limits GVD. We sought to identify the origins of SMLCs and of cells expressing the CSF1 receptor (CSF1R) in GVD, and to test the hypothesis that pharmacologic inhibition of CSF1 signalling would curtail both macrophage and SMLC activities and decrease vascular occlusion. METHODS AND RESULTS: We used genetically modified mice and a vascular transplant model with minor antigen mismatch to assess cell origins. We found that neointimal SMLCs derive from both donor and recipient, and that transdifferentiation of macrophages to SMLC phenotype is minimal in this model. Cells expressing CSF1R in grafts were identified as recipient-derived myeloid cells of Cx3cr1 lineage, and these cells rarely expressed smooth muscle marker proteins. Blockade of CSF1R activity using the tyrosine kinase inhibitor PLX3397 limited the expression of genes associated with innate immunity and decreased levels of circulating monocytes and intimal macrophages. Importantly, PLX3397 attenuated the development of GVD in arterial allografts. CONCLUSION: These studies provide proof of concept for pharmacologic inhibition of the CSF1/CSF1R signalling pathway as a therapeutic strategy in GVD. Further preclinical testing of this pathway in GVD is warranted.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Remodelação Vascular , Aminopiridinas/farmacologia , Animais , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases
4.
Sci Rep ; 10(1): 3594, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107417

RESUMO

The allograft inflammatory factor (AIF) gene family consists of two identified paralogs - AIF1 and AIF1-like (AIF1L). The encoded proteins, AIF1 and AIF1L, are 80% similar in sequence and show conserved tertiary structure. While studies in human populations suggest links between AIF1 and metabolic diseases such as obesity and diabetes, such associations with AIF1L have not been reported. Drawing parallels based on structural similarity, we postulated that AIF1L might contribute to metabolic disorders, and studied it using mouse models. Here we report that AIF1L is expressed in major adipose depots and kidney but was not detectable in liver or skeletal muscle; in notable contrast to AIF1, AIF1L was also not found in spleen. Studies of AIF1L deficient mice showed no obvious postnatal developmental phenotype. In response to high fat diet (HFD) feeding for 6 or 18 weeks, WT and AIF1L deficient mice gained weight similarly, showed no differences in fat or lean mass accumulation, and displayed no changes in energy expenditure or systemic glucose handling. These findings indicate that AIF1L is not essential for the development of obesity or impaired glucose handling due to HFD, and advance understanding of this little-studied gene and its place in the AIF gene family.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Intolerância à Glucose/metabolismo , Fígado/metabolismo , Proteínas dos Microfilamentos/metabolismo , Obesidade/metabolismo , Aumento de Peso/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Obesidade/genética
5.
Circ Res ; 126(5): 619-632, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31914850

RESUMO

RATIONALE: Remodeling of the vessel wall and the formation of vascular networks are dynamic processes that occur during mammalian embryonic development and in adulthood. Plaque development and excessive neointima formation are hallmarks of atherosclerosis and vascular injury. As our understanding of these complex processes evolves, there is a need to develop new imaging techniques to study underlying mechanisms. OBJECTIVE: We used tissue clearing and light-sheet microscopy for 3-dimensional (3D) profiling of the vascular response to carotid artery ligation and induction of atherosclerosis in mouse models. METHODS AND RESULTS: Adipo-Clear and immunolabeling in combination with light-sheet microscopy were applied to image carotid arteries and brachiocephalic arteries, allowing for 3D reconstruction of vessel architecture. Entire 3D neointima formations with different geometries were observed within the carotid artery and scored by volumetric analysis. Additionally, we identified a CD31-positive adventitial plexus after ligation of the carotid artery that evolved and matured over time. We also used this method to characterize plaque extent and composition in the brachiocephalic arteries of ApoE-deficient mice on high-fat diet. The plaques exhibited inter-animal differences in terms of plaque volume, geometry, and ratio of acellular core to plaque volume. A 3D reconstruction of the endothelium overlying the plaque was also generated. CONCLUSIONS: We present a novel approach to characterize vascular remodeling in adult mice using Adipo-Clear in combination with light-sheet microscopy. Our method reconstructs 3D neointima formation after arterial injury and allows for volumetric analysis of remodeling, in addition to revealing angiogenesis and maturation of a plexus surrounding the carotid artery. This method generates complete 3D reconstructions of atherosclerotic plaques and uncovers their volume, geometry, acellular component, surface, and spatial position within the brachiocephalic arteries. Our approach may be used in a number of mouse models of cardiovascular disease to assess vessel geometry and volume. Visual Overview: An online visual overview is available for this article.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Imageamento Tridimensional/métodos , Neovascularização Fisiológica , Imagem Óptica/métodos , Placa Aterosclerótica/diagnóstico por imagem , Animais , Apolipoproteínas E/genética , Variação Biológica da População , Artérias Carótidas/patologia , Artérias Carótidas/fisiologia , Dieta Hiperlipídica/efeitos adversos , Imageamento Tridimensional/normas , Camundongos , Camundongos Endogâmicos C57BL , Neointima/diagnóstico por imagem , Neointima/patologia , Imagem Óptica/normas , Placa Aterosclerótica/etiologia , Remodelação Vascular
6.
Atherosclerosis ; 289: 184-194, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439353

RESUMO

BACKGROUND AND AIMS: Allograft inflammatory factor-1 (AIF1) has been characterized as a pro-inflammatory molecule expressed primarily in the monocyte/macrophage (MP) lineage and positively associated with various forms of vascular disease, including atherosclerosis. Studies of AIF1 in atherosclerosis have relied on mouse models in which AIF1 was overexpressed in either myeloid or smooth muscle cells, resulting in increased atherosclerotic plaque burden. How physiologic expression of AIF1 contributes to MP biology in atherogenesis is not known. METHODS: Effects of global AIF1 deficiency on atherosclerosis were assessed by crossing Aif1-/- and ApoE-/- mice, and provoking hyperlipidemia with high fat diet feeding. Atherosclerotic plaques were studied en face and in cross section. Bone marrow-derived MPs (BMDMs) were isolated from Aif1-/- mice for study in culture. RESULTS: Atherosclerotic plaques in Aif1-/-;ApoE-/- mice showed larger necrotic cores compared to those in ApoE-/- animals, without change in overall lesion burden. In vitro, lack of AIF1 reduced BMDM survival, phagocytosis, and efferocytosis. Mechanistically, AIF1 supported activation of the NF-κB pathway and expression of related target genes involved in stress response, inflammation, and apoptosis. Consistent with this in vitro BMDM phenotype, AIF1 deficiency reduced NF-κB pathway activity in vivo and increased apoptotic cell number in atherosclerotic lesions from Aif1-/-;ApoE-/- mice. CONCLUSIONS: These findings characterize AIF1 as a positive regulator of the NF-κB pathway that supports MP functions such as survival and efferocytosis. In inflammatory settings such as atherosclerosis, these AIF1-dependent activities serve to clear cellular and other debris and limit necrotic core expansion, and may oppose lesion destabilization.


Assuntos
Aterosclerose/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Macrófagos/citologia , Proteínas dos Microfilamentos/metabolismo , Animais , Apoptose , Aterosclerose/metabolismo , Células da Medula Óssea/citologia , Sobrevivência Celular , Cruzamentos Genéticos , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Necrose , Fagocitose , Transdução de Sinais
7.
Arterioscler Thromb Vasc Biol ; 37(5): 879-888, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302627

RESUMO

OBJECTIVE: Smooth muscle cells (SMCs) contribute to neointima formation after vascular injury. Although ß-catenin expression is induced after injury, whether its function is essential in SMCs for neointimal growth is unknown. Moreover, although inhibitors of ß-catenin have been developed, their effects on SMC growth have not been tested. We assessed the requirement for SMC ß-catenin in short-term vascular homeostasis and in response to arterial injury and investigated the effects of ß-catenin inhibitors on vascular SMC growth. APPROACH AND RESULTS: We used an inducible, conditional genetic deletion of ß-catenin in SMCs of adult mice. Uninjured arteries from adult mice lacking SMC ß-catenin were indistinguishable from controls in terms of structure and SMC marker gene expression. After carotid artery ligation, however, vessels from mice lacking SMC ß-catenin developed smaller neointimas, with lower neointimal cell proliferation and increased apoptosis. SMCs lacking ß-catenin showed decreased mRNA expression of Mmp2, Mmp9, Sphk1, and S1pr1 (genes that promote neointima formation), higher levels of Jag1 and Gja1 (genes that inhibit neointima formation), decreased Mmp2 protein expression and secretion, and reduced cell invasion in vitro. Moreover, ß-catenin inhibitors PKF118-310 and ICG-001 limited growth of mouse and human vascular SMCs in a dose-dependent manner. CONCLUSIONS: SMC ß-catenin is dispensable for maintenance of the structure and state of differentiation of uninjured adult arteries, but is required for neointima formation after vascular injury. Pharmacological ß-catenin inhibitors hinder growth of human vascular SMCs. Thus, inhibiting ß-catenin has potential as a therapy to limit SMC accumulation and vascular obstruction.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , beta Catenina/deficiência , Animais , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Genótipo , Humanos , Masculino , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fenótipo , Pirimidinonas/farmacologia , Transdução de Sinais , Fatores de Tempo , Triazinas/farmacologia , Remodelação Vascular , beta Catenina/antagonistas & inibidores , beta Catenina/genética
8.
Parasitol Res ; 116(2): 711-723, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27987056

RESUMO

Chagas disease is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi, which affects about ten million people in its endemic regions of Latin America. After the initial acute stage of infection, 60-80% of infected individuals remain asymptomatic for several years to a lifetime; however, the rest develop the debilitating symptomatic stage, which affects the nervous system, digestive system, and heart. The challenges of Chagas disease have become global due to immigration. Despite well-documented dietary changes accompanying immigration, as well as a transition to a western style diet in the Chagas endemic regions, the role of host metabolism in the pathogenesis of Chagas disease remains underexplored. We have previously used a mouse model to show that host diet is a key factor regulating cardiomyopathy in Chagas disease. In this study, we investigated the effect of a high-fat diet on liver morphology and physiology, lipid metabolism, immune signaling, energy homeostasis, and stress responses in the murine model of acute T. cruzi infection. Our results indicate that in T. cruzi-infected mice, diet differentially regulates several liver processes, including autophagy, a stress response mechanism, with corresponding implications for human Chagas disease patients.


Assuntos
Autofagia/fisiologia , Doença de Chagas/parasitologia , Dieta Hiperlipídica , Fígado/patologia , Trypanosoma cruzi/patogenicidade , Adaptação Fisiológica , Animais , Colesterol/metabolismo , Coração/parasitologia , Humanos , Inflamação/fisiopatologia , América Latina , Metabolismo dos Lipídeos/fisiologia , Fígado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Miocárdio/patologia , Estresse Oxidativo/fisiologia
9.
Diabetes Metab Res Rev ; 31(4): 346-359, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25613819

RESUMO

BACKGROUND: Infection with Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, results in chronic infection that leads to cardiomyopathy with increased mortality and morbidity in endemic regions. In a companion study, our group found that a high-fat diet (HFD) protected mice from T. cruzi-induced myocardial damage and significantly reduced post-infection mortality during acute T. cruzi infection. METHODS: In the present study metabolic syndrome was induced prior to T. cruzi infection by feeding a high fat diet. Also, mice were treated with anti-diabetic drug metformin. RESULTS: In the present study, the lethality of T. cruzi (Brazil strain) infection in CD-1 mice was reduced from 55% to 20% by an 8-week pre-feeding of an HFD to induce obesity and metabolic syndrome. The addition of metformin reduced mortality to 3%. CONCLUSIONS: It is an interesting observation that both the high fat diet and the metformin, which are known to differentially attenuate host metabolism, effectively modified mortality in T. cruzi-infected mice. In humans, the metabolic syndrome, as presently construed, produces immune activation and metabolic alterations that promote complications of obesity and diseases of later life, such as myocardial infarction, stroke, diabetes, Alzheimer's disease and cancer. Using an evolutionary approach, we hypothesized that for millions of years, the channeling of host resources into immune defences starting early in life ameliorated the effects of infectious diseases, especially chronic infections, such as tuberculosis and Chagas disease. In economically developed countries in recent times, with control of the common devastating infections, epidemic obesity and lengthening of lifespan, the dwindling benefits of the immune activation in the first half of life have been overshadowed by the explosion of the syndrome's negative effects in later life.


Assuntos
Tecido Adiposo Branco/imunologia , Doença de Chagas/imunologia , Metabolismo Energético/efeitos dos fármacos , Síndrome Metabólica/imunologia , Modelos Imunológicos , Obesidade/imunologia , Trypanosoma cruzi/imunologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/parasitologia , Adiposidade/efeitos dos fármacos , Animais , Linhagem Celular , Doença de Chagas/sangue , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Citocinas/sangue , Citocinas/metabolismo , Prepúcio do Pênis/efeitos dos fármacos , Prepúcio do Pênis/imunologia , Prepúcio do Pênis/metabolismo , Prepúcio do Pênis/parasitologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/imunologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/parasitologia , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Leptina/sangue , Leptina/metabolismo , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Síndrome Metabólica/parasitologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos Endogâmicos , Obesidade/sangue , Obesidade/metabolismo , Obesidade/fisiopatologia , Distribuição Aleatória , Análise de Sobrevida , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/isolamento & purificação , Trypanosoma cruzi/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...